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Stress fluctuations in continuously sheared dense granular materials
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At high solid concentrations, computer simulations of sheared granular materials comprised of randomly
arranged, monodisperse, smooth, inelastic spherical particles flowing in a Couette geometry show large fluc-
tuations in the normal stress at the walls. These fluctuations are characterized by a marked asymmetric
amplitude distribution similar to those observed in recent experiments. In these systems the particles’ mean
square displacement in the shear direction is observed to vanish locally which indicates the formation of
crystallized regions. However, there are other regions in the system with nonzero values for the mean square
displacement in the shear direction. This observation indicates that a sheared monodisperse granular material
initially in a disordered state could evolve to a system in which the crystal phase is formed largely with a
well-defined interface between different phases. The periodic phase transition is observed between the com-
pressed, highly ordered crystalline state and the dilated, less ordered state of the layer of particles adjacent to
the wall, which may explain the stick-slip behavior which occurred in the experiments.
[S1063-651%9905612-3

PACS numbds): 45.70.Mg, 61.20.Ja, 83.50v

[. INTRODUCTION they may motivate new theoretical efforts toward under-
standing the microscopic origin of stick-slip behavior.

The interest in granular flows, such as grain flow in silos
[1], catalytic particle flow in bed$2], rockfalls [3], and
pack-ice flows[4], arises because granular flows exhibit a
wide range of rheological behavior related to the kinds of One possible method for the simulation of granular as-
interactions that take place between grains. It appears thgemblies under shear is the soft sphere molecular dynamics
many real engineering problems, such as applications to thepproach in which each particle during a collision interacts
industrial handling, are in a flow regime involving instanta- with its neighbors by a damped normal force, which is a
neous collisions between the grains as well as long livedunction of the degree of deformation at points of contact, as
sliding contactg5]. In contrast, there is clear experimental well as a superimposed shear force, which is simply related
evidence[ 6] that the dynamics of grains may be dominatedto the normal force by introducing a coefficient friction
by collisions rather than sliding contacts even in slow dens¢9]. In this time-driven simulation, to assure sufficient accu-
flows. Therefore, the physical relevance of the assumptiomacy, the interaction force between the particles must be cal-
that grains in a dense flow have complex interactions of ficulated at least 100 times due to the presence of a very large
nite duration[7] remains a topic of controversy. gradient of the interaction force during a collision. There-

The motivation for this study is, therefore, to examinefore, a three-dimensional simulation with a large number of
carefully the importance of particle surface roughness in departicles may not currently be achievable using this ap-
scribing the observed dynamical features of continuouslyproach.
sheared granular materials at high solid concentrati8hs It has been assumed previously that an event-driven simu-
To this end, computer simulations based on the model ddation algorithm can be used for the simulation of a dense
scribed in Sec. Il are used to produce results suitable fogranular flow in which the effect of friction may be of inter-
comparison with available experimental data. Simulations oest[10]. The algorithm allows the creation of the trajectories
shearing flows of randomly arranged, monodisperse, spheréf a large number of particles in the simulation box by cal-
cal particles with rough or smooth surfaces were carried outulating only the precollisional and postcollisional velocities
in a Couette geometry. The results of simulations are preand spins, without considering the details of the collision.
sented in Sec. lll. The time series of the dimensionless nor- Given that previous modelgl0,11 do not provide the
mal stress at the walls revealed the presence of stick-sligetails of the collisions, an obvious question is how could
dynamics in the shearing flows of a system comprised ofhese types of models be used to study the frictional effects.
smooth particles at solid volume fraction of 0.6, where aTo address this question, a brief discussion of the present
crystalline phase is formed which spans a large part of thenodel is given below.
computational box. The present results are of interest since In the present study, the hard-sphere model of Alder and

II. SIMULATION MODEL
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Wainwright [12] has.b.een modifigd _by intrqduqing dissipa- B= _1+M(1+e)(1+1/K)|(R.Vi1n;p)|2|/||2x(vilrgpx R)l.
tion through a coefficient of restitutiog which is propor- (5)
tionality relation between the precollisional and postcolli-
sional normal impact velocities in a binary collisiion. That is, Otherwise, if 7]2||2>< (vi{gpx |2)|<M,71|(|2.Vi1”2m)12|, stick-
o A ing or nonslipping contact is assumed to occur. This is a
(VI -k)k=—e(Vi? k)k, (1)  rather intriguing phenomena which involves not only the re-
duction of the magnitude of the relative velocity in the tan-
where the impact velocity, which is the relative velocity of gential but also the reversal of its direction during a collision.
the two points on the particle surfaces that come together 4tor this case, the value of the tangential coefficient of resti-
impact, V13°, is given by tution may be assumed to be that suggested in R,
which is a phenomenological constant characterizing the res-
. o. titution of velocity in the tangential direction for sticking
V'1”§p=(V1—V2)—§k><(w1+ w5). (2)  contact, denoted by3,. In the above,n,=3(1+€),7,
=1(1+B)K/(1+K), andK=4l/(mc?), andm and | are

. . . the mass and the moment of inertia of the particle, respec-
Here o is the diameter of the particle/; and w; are the tively P P

. . - .
translational velocity of the center and the spiri'Bfparticle The special case g8=0 which is used in the previous

(i=1,2), respectivelyk is the unit vector directed from the sjmulations[11] corresponds to situations in which phenom-
center of particle 1 to that of particle 2 at the moment ofenological parameters, namely, inelasticity and surface fric-
impact, and the prime indicates the post-collisional value otjon, are sufficient to eliminate the postcollisional relative
the relative velocity V75" velocities in the tangential direction.

Measurements have shown that the normal restitution co- Once the coefficients of restitution have been calculated,
efficiente, which depends significantly on the impact veloc- the postcollisional velocities and spins, which are required in
ity, decreases from unity as the normal impact velocity,order to create the particles trajectories in the cell, can be
which is the component in the direction &f namely,V, determined using the following expressions obtained by the
=V,,™.k, increases from zerd.3]. Assuming that the col- consideration of the conservation of momentum in a binary
lisions are slow enough so that no plastic deformation occollision:
curs, Schwager and Posch#&¥] used a generalization of the o )

Hertz theory of elastic impact for the case of viscoelastic =~ V1—Vi=V5—V,=(71— 1) (k- VI2))k+ 7,V5P,
collisions and suggested an approximate functional form for (6)
e(V,) as 1-e~VY®, which appears to be in agreement with
the experimental data. Following Schwager and Poschel, the , , 2k ~ imp
heuristic functional form for the coefficient of restitution is wl_wl:wZ_w?ZGx[ka(vﬂ xK)].
assumed given by
Using the details mentioned above, simulations of shear
e(Vy)=1—(1—e)(V,/Vy)" (3)  flows of a granular material were carried out on systems
comprised of 4296 of randomly arranged, monodisperse,
Here e and V, are the adjustable parameters of the modeppherical particles in periodically repeated rectangular cells.
used to obtain a fit to the data, whevg has the same di- The particles are driven into shearing flow by moving the top
mension a3/, . and bottom walls in opposite directions along #direction.

As the two rough particles collide, not only the normal The walls are made up of two irregular cubic arrays com-

component but also the component\dfi® in the direction ~ Prised of 400 very massive hemispherical particles with the

. . 5 (VTP RY i same diameter as the interior particles. The_ compu_tatio_nal
perpendicular tdk, namely,kx (Vz"xk), is changed such box is rectangular, and the lengths of the box in the direction

that of the local velocity, the shear, and the direction normal to
. IV . : " both the local velocity and shear, drg=1, L,=0.497, and
kX (V" XK)=—BkX (V"XK), (4 L,=1, respectively. The initial velocities are assigned ran-
dom directions with a magnitude according to a linear veloc-
where g is the tangential coefficient of restitution. ity profile U(z) = yze,. The initial spins are all set to zero.

In the present idealized model, the valugiflepends on  HereU(z) is the axial velocity,y is the apparent shear, and
the surface friction coefficient, as well as the ratio of the g, represents the unit vector in txedirection, which is the
normal impulsemnl(R-V‘lrgp)R, and the tangential impulse direction of mean flow. Further details including a geometri-
in the direction perpendicular foand lies in the plane o, cal description of the problem were presented in previous

namely,mz,k X (VITPx k). studies{15].
Assuming that slipping and sticking regions do not coex-

ist in a given impact and the normal and tangential impulses

at point of contact obey the Coulomb law of friction, it can | this section attempts are directed toward finding appro-

be stated that ify, kX (VI?PXK)|=uni|(k-VISP)K|, the priate values for the phenomenological parameters of the

particle surfaces slip over one another and, therefore, thmodel discussed in Sec. Il by which the observed macro-

tangential coefficient of restitution is found as scopic flow featuref8] can be predicted for a sheared granu-

IIl. RESULTS AND DISCUSSION
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FIG. 1. Radial distribution function of a sample taken after L (sec)
about 5<10” collisions, for ¢s~0.6, e=0.84, n=0.41, andj, FIG. 2. The probability that a particle survives a titgavithout

— * H H . H H _ —
t_(IJ Hergtr. —r/Rt,hwherer lls a (tjlsttﬁncel. Insetl. F;:(.)Jef(.:tlon of pglr suffering a collision. The solid volume fraction is~0.565, and
tcles positions in the sample onto the p aly_e)(. n this tigure, an the phenomenological parameters are those of Fig. 1.

in Fig. 9 only the center points of the particles are shown.

_ ) particle experiences a collision less than iGec after its

lar flow. Here the surface roughness is characterized by greyious collision is quite small. Based on this observation
coefficient of frictionu, as well as a phenomenological con- the yse of the idealized dissipative hard-sphere model de-
stant for sticking contactg,. It should be noted that the gcriped in Sec. Il seems to be justified. However, it is nec-
values of the particle phenomenological parameteys, and  essary at this point to examine the variation of dimensionless
Bo for collisions between interior particles and wall particles norma| stressp* = p/[4ppR2(zu/Lz)2], on the wall with
are taken to be the same as those for collisions betweefimensionless timet* =tU/L,, as shown in Fig. 3. Here
interior particles. The extreme case with surface friction COvepresents timep,, is the material density, an is the par-
efficient =0 might resemble the shearing flow in which the jjcle radius. Since the localized time-dependent stresses have
dynamics of grains is domlnatgd by coII|S|o_ns. In the otherpeen found experimentally to be far larger than the nj&an
extreme case, where the particle surface is assumed to Re:an pe concluded that the simulations performed using the
quite rough, namely.=0.41[16], the frictional contact apove-mentioned values of the particle surface properties are
forc_e.between the parncle; governs the flow dynamics angqt fully representative of real granular systems.
collisional effects are of minor relevance. The theory of Lun and Savadd7] revealed that in a

By increasing the apparent shear rate from zeroyto gsjmjlar shearing motion, particles with rough surfaces could
=2U/L,~4 s *, which falls toward the upper end of the haye more energy in rotational mode than particles with
range of shear rate of the experimef@, a shear flow is  smooth surfaces. In this light, the shearing motion of a sys-
applied to the system described in Sec. Il which is comprisegem of spherical particles with surfaces smoother than those
of randomly arranged, rough, inelastic spherical particles at g the above-mentioned simulations could provide the trans-

solid volume fraction of 0.6. Her®l represents the velocity |ational fluctuation energy needed for the large scale fluctua-
of one of the walls. Dissipation generated by particle-particle

collisions is modeled using a constant coefficient of restitu- .

tion, e=0.84, as well as a surface friction coefficient 0.7 0‘8P 09 1
=0.41. The phenomenological constant for sticking con- 107
tacts, B, is set to zero. Therefore, the selected values of the [
phenomenological parameters are close to those used in the
previous simulation§l1]. The radial distribution function of

a sample taken after>610" collisions is shown in Fig. 1. n
il
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The value of the radial distribution function at contact im- SF
plies that the mean free time between collisions should be An gy
very short. From the results obtained, the mean free time for
an individual particle was calculated to be about B0’
sec. Therefore, at a high solid volume fraction with the se-
lected phenomenological parameters, the system hardly can
be considered as shearable.

It is instructive to consider how decreasing the solid vol- 100 ¢
ume fraction can change the mean free time. By decreasing
the average solid volume fraction to 0.565, with the same FIG. 3. Dimensionless normal streB%, exerted on the wall, vs
phenomenological parameters as mentioned above, the medimensionless timé* for ¢4~0.565, e=0.84, 1 =0.41, andg,
free time increases to 0.015 sec, which is about two orders of 0. Inset: The probability density function of the dimensionless
magnitude higher than the typical value of the duration of anormal stress at*>200, where the mean dimensionless normal
collision [13]. As shown in Fig. 2, the probability that a stress is a constant, nameR* = 0.81.
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FIG. 4. Dimensionless normal streB$ vs dimensionless time

t*: the upper curve is foasg 0.565,e=0.93, =0 (particles with FIG. 5. Dimensionless normal streB$ exerted on the wall vs
smooth surfaces the curve in the middle is forgwo 565 e dimensionless tim&*, for smooth inelastic particles fa&=0.93 at
S . [l

=0.93, 1 =0.123, and3,=0.4; and the lower curve is a portion of @ soli.d volume frgction.ogs~0.565. Inset: The probability density

Fig. 3. Inset: Portion of the middle curve where a significant changdunction of the dimensionless normal stress at$9<220.

in the dimensionless normal stress can be seen a& 1’58 165.

) ) _ ~and 6, there is concern as to whether the system at higher

tions observed experimental(8]. To test this hypothesis, solid volume fraction, namely, 0.6, behaves as a fluid. Gen-

the values for the phenomenological parameters suggesteg|ly, the radial distribution functiog(r*) is used to dis-

by Lun and Ben{10] for steel balls are used, namely, the tinguish fluidlike from solidlike behaviof18]. Examining

coefficient of restitutiore=0.93, the surface friction coeffi- the radial distribution function for a sample taken from the

cient ©=0.123, and the phenomenological constant for, ; - o _
C ’ ) : system at solid volume fraction =0.6, as shown b

sticking contactB,=0.4. At a solid concentration of 0.565, y abs y

e . ) ) dashed line in Fig. 7, an additional peak can be observed
convincing evidence supporting the aforementioned theory iBetween the first- and second-nearest-neighbor peaks. This

found by considering the large scale of fluctuations occurring,op,yior of the radial distribution function is very different

when smooth par_tlclgs, wh_ose surf_ac_e frlctlon coe_fﬂcu_ant 'Srom that of the fluidlike system at a solid volume fraction of
zero, were used in simulations. This is illustrated in Fig. 4, 565, denoted in Fig. 7 by a solid line. Therefore, there is a
which compares the dimensionless normal stress on the Wagllear indication that the initially disordered sample at a solid

of cases at the same ave_rage_solld volume fractlons_and Aaction of 0.6, had partially crystallized under shearing mo-
erage shear rates, but with different phenomenological Paion

rameters. There are sudden decreases in dimensionless nor-,
mal stress in the shearing flow of rough particles, as show
in the inset of Fig. 4. However, in general the results supporf;
the notion that the rough particles tend to have more energ
in rotational mode than smooth patrticles.

Comparing the results presented in Fig. 4 with those of

t this stage it is interesting to examine the fluctuations,
s shown in Fig. 6, by considering the power spectra of the
me series for the dimensionless normal stress about the
¥hean value. As seen from Fig(eB, the power density ap-

*

real systemg8], it appears even more certain that the dy- 10 20F 30 40 035
namics of grains could be dominated by collisions rather 75 5
than sliding contacts in dense flows of granular materials 02§
under continuous shear. But the simulation result for par- 60 =
ticles with smooth surfaces at a solid volume fraction of B

; . . i . . 0.13
0.565 still shows a discrepancy in flow behavior vis-a-vis S
that of real systems. Recent annular shear cell {&tse- .45 0 A

vealed a marked asymmetric shape in the amplitude distribu- A

tion. In this case, the fluctuations seem to be symmetric 30
around a mean value, as depicted in Fig. 5. I

At this stage, it is natural to ponder why such a disagree- 15
ment should occur. The explanation appears to lie with the
value of solid volume fraction in the above-mentioned simu- 0
lation. As shown in Fig. 6, at a solid volume fraction of 0.6, 0 30 100t* 150 200

fluctuations in time series of the dimensionless normal wall

stress, which are obtained for a system of monodisperse, FIG. 6. Dimensionless normal streB%, exerted on the wall, vs

smooth spherical particles with a coefficient of restituteon dimensionless time*, for smooth inelastic particles f&=0.93 at

=0.93, show a strong analogy with those observed in recersolid volume fraction of¢~0.6. To provide a better visualization,

experimentg8]. only every 20th point is plotted. Inset: The probability density func-
Considering the profound differences in the time seriegion of the dimensionless normal stress atd0<220, where the

for the dimensionless normal stresses illustrated in Figs. fean dimensionless normal stress is a constant, nameiy,1.5.
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FIG. 7. The dashed line is the radial distribution function of a 10 107 10° 10" 10

sample taken aftet* ~150, for smooth inelastic particles fa
=0.93 at a solid volume fraction aps~0.6. Inset: Fewer particle (b)
pairs separated by 2.8, but more pairs separated by 3.5. The sol
line represents the radial distribution function of a sample taker
aftert* ~ 150, for smooth inelastic particles fer=0.93 at a solid
volume fraction of ¢s~0.565. No indication of the crystalline
structure can be observed.

pears to be a function of an inverse power of frequency a
low frequencies, and the spectra become even steeper at hi
frequencies {>30 Hz. Unfortunately, the use of a discrete
Fourier transform does not generate a smooth power spe
trum density. Therefore, the straight lines which indicate the
power laws off “%® and f =2 which represents the scaling
behavior of datg8] at low and high frequencies, respec-
tively, are also plotted in Fig.(8) for the comparison. It is
worth mentioning that the relatively smooth power spectre 50 100 150
illustrated in Ref. 8 were obtained using a Hamming window
[19].

There is, however, a significant difference between the
behavior of the spectra as illustrated in Figajgand those of FIG. 8. (a) The power spectrum of the steady state portion of the
Miller, O’Hern, and Behringef8] at the intermediate range (ime series for dimensionless normal stress shown in Fig. 6. The
of 4<f<25. The characteristic harmonic frequencies can b&graight lines at the left and the right indicate the power [&w&®
observed in Fig. &), which may be associated with the andf-2, respectively(b) Short-time Fourier transform. Shown is
stick-slip motion observed by Hanes and Inm@®0]. To  the magnitude of the time-dependent Fourier transform of the por-
provide a better visualization of these frequencies, a shortion of time series at 58t* <150. Only a portion of the frequency
term Fourier transform is used, which consists of computinglomain, namely, 4 f<30, is shown. The magnitude intensity is
the Fourier coefficients of the product of dimensionless noreoded using a gray scale, from whifew intensity to black (high
mal stress within the interval 50t* <150 and a sliding intensity.
compactly supported window functidr21]. Figure 8&b) il-
lustrates the spectrogram of a sequence of the magnitude parameters, denoted I§;,(R)=Yn(8(R),#»(R)), is asso-
the time-dependent Fourier transform versus time. These fresiated with each bond which joins a particle with its near
guencies are long lived, and the slight change of frequencyeighbors[22]. For the crystalline region, the reduced rota-
with time might be related to some dynamical instability in tionally invariant combinations o®,,,, hamely,
the system.

In the present system, stick-slip motion may be associated I
with the periodic phase transition between the compressed, merme Mg om, my Qim, Qim,Qimg
highly ordered state and the dilated, less ordered state of the | +m,+ms=0
thin layer of particles separating the moving upper wall from W= 32
a crystallized region, as shown in Fig. 9. It can easily be [2 |le|2}
visually discerned that the crystallized region is located at m
(—0.5,0.5)¢(0,0.18) and the aforementioned thin layer at . . .
(—0.5,0.5)x(0.2,0.22). It would be useful, however, to ob- aré found to beW,=—0.135, W= —0.013, Wg=0.057,
tain a more quantitative measure of the symmetry of clusterandW,;,=0.036. Except for a sign diV,, the values oWV,
comprised of a particle and its 12 nearest neighbors in thare consistent with cuboctahedral symmei®2]. Here R
crystallized region. To this end a set of orientational orderepresents the position of the bond midpoint,

f (Hz)

t*

()
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FIG. 9. Projection of particles positions onto the playezj. 0 0.5 ’C*

The values of solid volume fraction and the phenomenological pa-
rameters are those of Fig. 6.

Y\m(0(R),#(R)) are spherical harmonic#)(R) and ¢(R)

FIG. 10. Variations of dimensionless mean square displacement,
(AZ*?), with 7. The circles and diamonds represent the calcu-

are the polar angles of the bond measured with respect tolated value of AZ*2) for the noncrystalline and crystalline regions,

fixed reference coordinate system, the coefficients

are Wigner 3 symbols, and the averaged quant@m
=(Qim(R)) is taken over the bonds joining particles in the

I I I
m, m, mg

sample with their near neighbors. : ! .
Another quantity that can be used to distinguish fluigflows, different values of particle phenomenological param-

from solid-like behavior is the mean square displacemen€ters should be considered. As such, simulations were run to

defined by

N

(AZ*2)= N’lg ([ZF (t* + )= ZF (1)]?).

Here Z* (t*)=Z;(t*)/(2R) represents the position of par-
ticle i in the z direction at dimensionless tim#&, which is
normalized by the particle diameté¥;is the number of par-

respectively, of the configuration shown in Fig. 9. Inset: A stream-
line in the noncrystalline region of the configuration shown in Fig.
9.

the implications of phase coexistence in dense granular flows
are planned to be discussed in a subsequent paper.

In order to validate the premise that collisions rather than
sliding contact may dominate the dynamics of dense granular

examine the effect of surface roughness on the dynamics of
grains at high solid volume fractions. Figure 11 clearly illus-
trates that at a solid volume fraction of 0.6, the fluctuations
in the time series for the normal stress of the shear flow of
inelastic frictional spherical particles—with the phenomeno-
logical parametere=0.93, ©=0.123, andB,=0.4—are
symmetric around a mean value. Therefore, in the absence of
granular crystals, granular materials flowing in a Couette ge-
ometry do not show a wall normal stress signature similar to

ticles in the computational box;is time, 7* = 7U/L, shows
that the samples are taken a time intervahpart; and the
angular brackets indicate the ensemble average.

As can be seen in Fig. 10, particles with smooth surfaces
are diffusive, except for those particles located in the crys-
talline region. This is consistent with recent experimental
observationg 23] for which movement of the particles in
directions transverse to the bulk motion were reported at a
very high solid concentration. The particle movements in the
direction normal to the shear plane in this system can be
caused by several thermodynamic forf24]. Therefore, it is
not clear that the self-diffusion coefficient can be deduced
from data shown in Fig. 10 using the Einstein relati@s).

This ad hocmethod suggested in R4R3], which was also
used in an earlier work26], can at best result in an effective
particle diffusion coefficient.

Efforts at understanding the particle diffusive motion in
the above-mentioned system resulted in finding the presence
of a two phase granular flow, in which solid and liquid

*

P

25 6 8 10 12 =
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20 £

| .

L£
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0 50 10(*) 150 200
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FIG. 11. Dimensionless normal streB% vs dimensionless time

phases coexist, in the computational box. A streamline in the*, for rough, inelastic particles fops~0.6, e=0.93, u=0.123,
noncrystalline region27], as shown in the inset of Fig. 10, andB,=0.4. Inset: The probability density function of the dimen-
exhibits a behavior which indicates the presence of largesionless normal stress at26* <200, where the mean dimension-
slow fluctuations. A study of phase transformation as well asess normal stress is a constant, namefy/~7.6.
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* real system 8] can be generated. Simulations ferx0.93
andV,=0.5 resulted in somewhat similar time series for the
dimensionless normal wall stress, as shown in Fig. 12. Com-
paring the results presented in Figs. 6 and 12 with those of
real systemg8], the effect of a velocity-dependent coeffi-
50 cient of restitution on the dynamics of grains may not be
|||||"|"""""_ pronounced for the flow conditions considered in this study.
A However, the large scale fluctuations, as shown in Fig. 12,
seem to be closer to what was observed experimer{i@ly

75

L e
(%)

0.05

Probability density

(=]

25

IV. CONCLUSIONS

Computer simulations with an idealized collisional model
were performed for both smooth and rough, monodisperse
spherical particles in a Couette flow to examine the effect of
particle phenomenological parameters on the flow dynamics.

FIG. 12. Dimensionless normal streB¥ vs dimensionless time  When smooth particles were used, an asymmetric normal
t*, for smooth inelastic particles for e(V,)=1—(1 stress distribution at the wall was obtained, consistent with
—e)(V,/Vp)*®. The model parameters age=0.93 andV,=0.5.  recent experimental finding8]. In addition, for this case
To provide a better visualization, only every 20th point is plotted. crystallization was observed to occur, as characterized by the
Inset: The probability density function of the dimensionless normallocal absence of diffusion, although diffusion still existed in
stress at 7€t* <240. the noncrystallized regions. Significantly, by examining the

) _ ) ) fluctuations of the normal stress on the walls, the presence of
that observed in recent experimeri@§. This observation, the stick-slip motion was found in this system. This finding
which supports the earlier conjecture that the microscopignay explain the unsteady complications which occurred in
origin of stick-slip behavior could be the shear-melting tran-ine experiments of Hanes and Inmg20]. The origin of
sitions and recry_stallization of the layer of particles adj_acengtick_snp behavior appears to be the shear-induced melting
to the wall, provides further evidence that the dynamics ofynq recrystallization of the layer of particles adjacent to the
dense granular flows may be collision dominated. wall. In light of the findings of the present study, future

However, the results presented above using a constagfeoretical studies will be conducted with the goal of im-
coefficient of restitution may be regarded with some suspinroving our understanding of the microscopic origin of stick-
cion, since measurements have shown that the normal restip pehavior. Comparing the results of the simulations with
tution Coeff|C|ent IS not a Constant, and that it depends S|gprevious|y reported experimenta| data, it can be concluded

nificantly on the impact velocity10]. To examine the effect tnat the present idealized collisional model can predict the
of a coefficient of restitution, which depends on the normalexperimental observations quite closely.

impact velocity on the dynamics of grains, E§) with V,

=0.5 is used. This heuristic model can predict thg trend of ACKNOWLEDGMENT

data well[10]. However, the value of the consta@tn the

model is chosen to be that suggested in the above, namely, The authors are grateful to Professor Robert P. Behringer
0.93, by which the large scale fluctuations observed in tha@t Duke University for helpful discussions.
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