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Stress fluctuations in continuously sheared dense granular materials
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At high solid concentrations, computer simulations of sheared granular materials comprised of randomly
arranged, monodisperse, smooth, inelastic spherical particles flowing in a Couette geometry show large fluc-
tuations in the normal stress at the walls. These fluctuations are characterized by a marked asymmetric
amplitude distribution similar to those observed in recent experiments. In these systems the particles’ mean
square displacement in the shear direction is observed to vanish locally which indicates the formation of
crystallized regions. However, there are other regions in the system with nonzero values for the mean square
displacement in the shear direction. This observation indicates that a sheared monodisperse granular material
initially in a disordered state could evolve to a system in which the crystal phase is formed largely with a
well-defined interface between different phases. The periodic phase transition is observed between the com-
pressed, highly ordered crystalline state and the dilated, less ordered state of the layer of particles adjacent to
the wall, which may explain the stick-slip behavior which occurred in the experiments.
@S1063-651X~99!05612-3#

PACS number~s!: 45.70.Mg, 61.20.Ja, 83.50.2v
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I. INTRODUCTION

The interest in granular flows, such as grain flow in si
@1#, catalytic particle flow in beds@2#, rockfalls @3#, and
pack-ice flows@4#, arises because granular flows exhibit
wide range of rheological behavior related to the kinds
interactions that take place between grains. It appears
many real engineering problems, such as applications to
industrial handling, are in a flow regime involving instant
neous collisions between the grains as well as long li
sliding contacts@5#. In contrast, there is clear experiment
evidence@6# that the dynamics of grains may be dominat
by collisions rather than sliding contacts even in slow de
flows. Therefore, the physical relevance of the assump
that grains in a dense flow have complex interactions of
nite duration@7# remains a topic of controversy.

The motivation for this study is, therefore, to exami
carefully the importance of particle surface roughness in
scribing the observed dynamical features of continuou
sheared granular materials at high solid concentrations@8#.
To this end, computer simulations based on the model
scribed in Sec. II are used to produce results suitable
comparison with available experimental data. Simulations
shearing flows of randomly arranged, monodisperse, sph
cal particles with rough or smooth surfaces were carried
in a Couette geometry. The results of simulations are p
sented in Sec. III. The time series of the dimensionless n
mal stress at the walls revealed the presence of stick
dynamics in the shearing flows of a system comprised
smooth particles at solid volume fraction of 0.6, where
crystalline phase is formed which spans a large part of
computational box. The present results are of interest s
PRE 601063-651X/99/60~6!/7149~8!/$15.00
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they may motivate new theoretical efforts toward und
standing the microscopic origin of stick-slip behavior.

II. SIMULATION MODEL

One possible method for the simulation of granular
semblies under shear is the soft sphere molecular dyna
approach in which each particle during a collision intera
with its neighbors by a damped normal force, which is
function of the degree of deformation at points of contact,
well as a superimposed shear force, which is simply rela
to the normal force by introducing a coefficient frictionm
@9#. In this time-driven simulation, to assure sufficient acc
racy, the interaction force between the particles must be
culated at least 100 times due to the presence of a very l
gradient of the interaction force during a collision. Ther
fore, a three-dimensional simulation with a large number
particles may not currently be achievable using this
proach.

It has been assumed previously that an event-driven si
lation algorithm can be used for the simulation of a den
granular flow in which the effect of friction may be of inte
est@10#. The algorithm allows the creation of the trajectori
of a large number of particles in the simulation box by c
culating only the precollisional and postcollisional velociti
and spins, without considering the details of the collision

Given that previous models@10,11# do not provide the
details of the collisions, an obvious question is how cou
these types of models be used to study the frictional effe
To address this question, a brief discussion of the pres
model is given below.

In the present study, the hard-sphere model of Alder a
7149 © 1999 The American Physical Society
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7150 PRE 60PIROZ ZAMANKHAN et al.
Wainwright @12# has been modified by introducing dissip
tion through a coefficient of restitutione, which is propor-
tionality relation between the precollisional and postco
sional normal impact velocities in a binary collisiion. That

~V12
imp8

• k̂!k̂52e~V12
imp

• k̂!k̂, ~1!

where the impact velocity, which is the relative velocity
the two points on the particle surfaces that come togethe
impact,V12

imp , is given by

V12
imp5~V12V2!2

s

2
k̂3~v11v2!. ~2!

Here s is the diameter of the particle,V i and v i are the
translational velocity of the center and the spin ofi th particle
( i 51,2), respectively,k̂ is the unit vector directed from th
center of particle 1 to that of particle 2 at the moment
impact, and the prime indicates the post-collisional value
the relative velocity,V12

imp .
Measurements have shown that the normal restitution

efficient e, which depends significantly on the impact velo
ity, decreases from unity as the normal impact veloc
which is the component in the direction ofk̂, namely,Vn
5V12

imp
•k, increases from zero@13#. Assuming that the col-

lisions are slow enough so that no plastic deformation
curs, Schwager and Poschel@14# used a generalization of th
Hertz theory of elastic impact for the case of viscoelas
collisions and suggested an approximate functional form
e(Vn) as 12e;Vn

1/5, which appears to be in agreement wi
the experimental data. Following Schwager and Poschel,
heuristic functional form for the coefficient of restitution
assumed given by

e~Vn!512~12e!~Vn /V0!1/5. ~3!

Here e and V0 are the adjustable parameters of the mo
used to obtain a fit to the data, whereV0 has the same di
mension asVn .

As the two rough particles collide, not only the norm
component but also the component ofV12

imp in the direction

perpendicular tok̂, namely,k̂3(V12
imp3 k̂), is changed such

that

k̂3~V12
imp83 k̂!52b k̂3~V12

imp3 k̂!, ~4!

whereb is the tangential coefficient of restitution.
In the present idealized model, the value ofb depends on

the surface friction coefficientm, as well as the ratio of the
normal impulse,mh1( k̂•V12

imp) k̂, and the tangential impuls

in the direction perpendicular tok̂ and lies in the plane ofk̂,
namely,mh2k̂3(V12

imp3 k̂).
Assuming that slipping and sticking regions do not coe

ist in a given impact and the normal and tangential impul
at point of contact obey the Coulomb law of friction, it ca
be stated that ifh2uk̂3(V12

imp3 k̂)u5mh1u( k̂•V12
imp) k̂u, the

particle surfaces slip over one another and, therefore,
tangential coefficient of restitution is found as
at
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b5211m~11e!~111/K !u~ k̂•V12
imp!k̂u/uk̂3~V12

imp3 k̂!u.
~5!

Otherwise, if h2uk̂3(V12
imp3 k̂)u^mh1u( k̂•V12

imp) k̂u, stick-
ing or nonslipping contact is assumed to occur. This is
rather intriguing phenomena which involves not only the
duction of the magnitude of the relative velocity in the ta
gential but also the reversal of its direction during a collisio
For this case, the value of the tangential coefficient of re
tution may be assumed to be that suggested in Ref.@10#,
which is a phenomenological constant characterizing the
titution of velocity in the tangential direction for stickin
contact, denoted byb0. In the above,h15 1

2 (11e),h2
5 1

2 (11b)K/(11K), and K54I /(ms2), and m and I are
the mass and the moment of inertia of the particle, resp
tively.

The special case ofb50 which is used in the previou
simulations@11# corresponds to situations in which phenom
enological parameters, namely, inelasticity and surface f
tion, are sufficient to eliminate the postcollisional relati
velocities in the tangential direction.

Once the coefficients of restitution have been calculat
the postcollisional velocities and spins, which are required
order to create the particles trajectories in the cell, can
determined using the following expressions obtained by
consideration of the conservation of momentum in a bin
collision:

V12V185V282V25~h12h2!~ k̂•V12
imp!k̂1h2V12

imp ,

~6!

v182v15v282v25
2k̂

Ks
3@h2k̂3~V12

imp3 k̂!#.

Using the details mentioned above, simulations of sh
flows of a granular material were carried out on syste
comprised of 4296 of randomly arranged, monodispe
spherical particles in periodically repeated rectangular ce
The particles are driven into shearing flow by moving the t
and bottom walls in opposite directions along thex direction.
The walls are made up of two irregular cubic arrays co
prised of 400 very massive hemispherical particles with
same diameter as the interior particles. The computatio
box is rectangular, and the lengths of the box in the direct
of the local velocity, the shear, and the direction normal
both the local velocity and shear, areLx51, Lz50.497, and
Ly51, respectively. The initial velocities are assigned ra
dom directions with a magnitude according to a linear vel
ity profile U(z)5gzex . The initial spins are all set to zero
HereU(z) is the axial velocity,g is the apparent shear, an
ex represents the unit vector in thex direction, which is the
direction of mean flow. Further details including a geome
cal description of the problem were presented in previo
studies@15#.

III. RESULTS AND DISCUSSION

In this section attempts are directed toward finding app
priate values for the phenomenological parameters of
model discussed in Sec. II by which the observed mac
scopic flow features@8# can be predicted for a sheared gran
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PRE 60 7151STRESS FLUCTUATIONS IN CONTINUOUSLY SHEARED . . .
lar flow. Here the surface roughness is characterized b
coefficient of frictionm, as well as a phenomenological co
stant for sticking contact,b0. It should be noted that the
values of the particle phenomenological parameterse, m, and
b0 for collisions between interior particles and wall particl
are taken to be the same as those for collisions betw
interior particles. The extreme case with surface friction
efficientm50 might resemble the shearing flow in which th
dynamics of grains is dominated by collisions. In the oth
extreme case, where the particle surface is assumed t
quite rough, namely,m50.41 @16#, the frictional contact
force between the particles governs the flow dynamics
collisional effects are of minor relevance.

By increasing the apparent shear rate from zero tog
52U/Lz'4 s21, which falls toward the upper end of th
range of shear rate of the experiments@8#, a shear flow is
applied to the system described in Sec. II which is compri
of randomly arranged, rough, inelastic spherical particles
solid volume fraction of 0.6. HereU represents the velocity
of one of the walls. Dissipation generated by particle-parti
collisions is modeled using a constant coefficient of rest
tion, e50.84, as well as a surface friction coefficientm
50.41. The phenomenological constant for sticking co
tacts,b0, is set to zero. Therefore, the selected values of
phenomenological parameters are close to those used i
previous simulations@11#. The radial distribution function of
a sample taken after 53107 collisions is shown in Fig. 1.
The value of the radial distribution function at contact im
plies that the mean free time between collisions should
very short. From the results obtained, the mean free time
an individual particle was calculated to be about 831027

sec. Therefore, at a high solid volume fraction with the
lected phenomenological parameters, the system hardly
be considered as shearable.

It is instructive to consider how decreasing the solid v
ume fraction can change the mean free time. By decrea
the average solid volume fraction to 0.565, with the sa
phenomenological parameters as mentioned above, the m
free time increases to 0.015 sec, which is about two order
magnitude higher than the typical value of the duration o
collision @13#. As shown in Fig. 2, the probability that

FIG. 1. Radial distribution function of a sample taken af

about 53107 collisions, for f̄s'0.6, e50.84, m50.41, andb0

50. Herer * 5r /R, wherer is a distance. Inset: Projection of pa
ticles positions in the sample onto the plane (yz). In this figure, and
in Fig. 9 only the center points of the particles are shown.
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particle experiences a collision less than 1023 sec after its
previous collision is quite small. Based on this observat
the use of the idealized dissipative hard-sphere model
scribed in Sec. II seems to be justified. However, it is n
essary at this point to examine the variation of dimensionl
normal stress,P* 5P/@4rpR2(2U/Lz)

2#, on the wall with
dimensionless time,t* 5tU/Lz , as shown in Fig. 3. Heret
represents time,rp is the material density, andR is the par-
ticle radius. Since the localized time-dependent stresses
been found experimentally to be far larger than the mean@8#,
it can be concluded that the simulations performed using
above-mentioned values of the particle surface properties
not fully representative of real granular systems.

The theory of Lun and Savage@17# revealed that in a
similar shearing motion, particles with rough surfaces co
have more energy in rotational mode than particles w
smooth surfaces. In this light, the shearing motion of a s
tem of spherical particles with surfaces smoother than th
in the above-mentioned simulations could provide the tra
lational fluctuation energy needed for the large scale fluct

FIG. 2. The probability that a particle survives a timetc without

suffering a collision. The solid volume fraction isf̄s'0.565, and
the phenomenological parameters are those of Fig. 1.

FIG. 3. Dimensionless normal stressP* , exerted on the wall, vs

dimensionless timet* for f̄s'0.565, e50.84, m50.41, andb0

50. Inset: The probability density function of the dimensionle
normal stress att* .200, where the mean dimensionless norm

stress is a constant, namely,P*̄ 50.81.
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7152 PRE 60PIROZ ZAMANKHAN et al.
tions observed experimentally@8#. To test this hypothesis
the values for the phenomenological parameters sugge
by Lun and Bent@10# for steel balls are used, namely, th
coefficient of restitutione50.93, the surface friction coeffi
cient m50.123, and the phenomenological constant
sticking contactb050.4. At a solid concentration of 0.565
convincing evidence supporting the aforementioned theor
found by considering the large scale of fluctuations occurr
when smooth particles, whose surface friction coefficien
zero, were used in simulations. This is illustrated in Fig.
which compares the dimensionless normal stress on the
of cases at the same average solid volume fractions and
erage shear rates, but with different phenomenological
rameters. There are sudden decreases in dimensionless
mal stress in the shearing flow of rough particles, as sho
in the inset of Fig. 4. However, in general the results supp
the notion that the rough particles tend to have more ene
in rotational mode than smooth particles.

Comparing the results presented in Fig. 4 with those
real systems@8#, it appears even more certain that the d
namics of grains could be dominated by collisions rat
than sliding contacts in dense flows of granular mater
under continuous shear. But the simulation result for p
ticles with smooth surfaces at a solid volume fraction
0.565 still shows a discrepancy in flow behavior vis-a-
that of real systems. Recent annular shear cell tests@8# re-
vealed a marked asymmetric shape in the amplitude distr
tion. In this case, the fluctuations seem to be symme
around a mean value, as depicted in Fig. 5.

At this stage, it is natural to ponder why such a disagr
ment should occur. The explanation appears to lie with
value of solid volume fraction in the above-mentioned sim
lation. As shown in Fig. 6, at a solid volume fraction of 0.
fluctuations in time series of the dimensionless normal w
stress, which are obtained for a system of monodispe
smooth spherical particles with a coefficient of restitutione
50.93, show a strong analogy with those observed in rec
experiments@8#.

Considering the profound differences in the time ser
for the dimensionless normal stresses illustrated in Fig

FIG. 4. Dimensionless normal stressP* vs dimensionless time

t* ; the upper curve is forf̄s'0.565,e50.93,m50 ~particles with

smooth surfaces!; the curve in the middle is forf̄s'0.565, e
50.93,m50.123, andb050.4; and the lower curve is a portion o
Fig. 3. Inset: Portion of the middle curve where a significant cha
in the dimensionless normal stress can be seen at 150<t* <165.
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and 6, there is concern as to whether the system at hig
solid volume fraction, namely, 0.6, behaves as a fluid. G
erally, the radial distribution functiong(r * ) is used to dis-
tinguish fluidlike from solidlike behavior@18#. Examining
the radial distribution function for a sample taken from t
system at solid volume fraction off̄s50.6, as shown by
dashed line in Fig. 7, an additional peak can be obser
between the first- and second-nearest-neighbor peaks.
behavior of the radial distribution function is very differe
from that of the fluidlike system at a solid volume fraction
0.565, denoted in Fig. 7 by a solid line. Therefore, there i
clear indication that the initially disordered sample at a so
fraction of 0.6, had partially crystallized under shearing m
tion.

At this stage it is interesting to examine the fluctuation
as shown in Fig. 6, by considering the power spectra of
time series for the dimensionless normal stress about
mean value. As seen from Fig. 8~a!, the power density ap-

e

FIG. 5. Dimensionless normal stressP* exerted on the wall vs
dimensionless timet* , for smooth inelastic particles fore50.93 at

a solid volume fraction off̄s'0.565. Inset: The probability densit
function of the dimensionless normal stress at 50,t* ,220.

FIG. 6. Dimensionless normal stressP* , exerted on the wall, vs
dimensionless timet* , for smooth inelastic particles fore50.93 at

solid volume fraction off̄'0.6. To provide a better visualization
only every 20th point is plotted. Inset: The probability density fun
tion of the dimensionless normal stress at 50,t* ,220, where the

mean dimensionless normal stress is a constant, namely,P̄'11.5.
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PRE 60 7153STRESS FLUCTUATIONS IN CONTINUOUSLY SHEARED . . .
pears to be a function of an inverse power of frequency
low frequencies, and the spectra become even steeper at
frequencies (f .30 Hz!. Unfortunately, the use of a discre
Fourier transform does not generate a smooth power s
trum density. Therefore, the straight lines which indicate
power laws of f 20.6 and f 22 which represents the scalin
behavior of data@8# at low and high frequencies, respe
tively, are also plotted in Fig. 8~a! for the comparison. It is
worth mentioning that the relatively smooth power spec
illustrated in Ref. 8 were obtained using a Hamming wind
@19#.

There is, however, a significant difference between
behavior of the spectra as illustrated in Fig. 8~a! and those of
Miller, O’Hern, and Behringer@8# at the intermediate rang
of 4, f ,25. The characteristic harmonic frequencies can
observed in Fig. 8~a!, which may be associated with th
stick-slip motion observed by Hanes and Inman@20#. To
provide a better visualization of these frequencies, a sh
term Fourier transform is used, which consists of comput
the Fourier coefficients of the product of dimensionless n
mal stress within the interval 50,t* ,150 and a sliding
compactly supported window function@21#. Figure 8~b! il-
lustrates the spectrogram of a sequence of the magnitud
the time-dependent Fourier transform versus time. These
quencies are long lived, and the slight change of freque
with time might be related to some dynamical instability
the system.

In the present system, stick-slip motion may be associa
with the periodic phase transition between the compres
highly ordered state and the dilated, less ordered state o
thin layer of particles separating the moving upper wall fro
a crystallized region, as shown in Fig. 9. It can easily
visually discerned that the crystallized region is located
(20.5,0.5)3(0,0.18) and the aforementioned thin layer
(20.5,0.5)3(0.2,0.22). It would be useful, however, to o
tain a more quantitative measure of the symmetry of clus
comprised of a particle and its 12 nearest neighbors in
crystallized region. To this end a set of orientational ord

FIG. 7. The dashed line is the radial distribution function o
sample taken aftert* '150, for smooth inelastic particles fore

50.93 at a solid volume fraction off̄s'0.6. Inset: Fewer particle
pairs separated by 2.8, but more pairs separated by 3.5. The
line represents the radial distribution function of a sample ta
after t* '150, for smooth inelastic particles fore50.93 at a solid

volume fraction of f̄s'0.565. No indication of the crystalline
structure can be observed.
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parameters, denoted byQlm(R)[Ylm„u(R),f(R)…, is asso-
ciated with each bond which joins a particle with its ne
neighbors@22#. For the crystalline region, the reduced rota
tionally invariant combinations ofQlm , namely,

Ŵl[

(
m1 ,m2 ,m3

m11m21m350

S l l l

m1 m2 m3
D Q̄lm1

Q̄lm2
Q̄lm3

F(
m

uQlmu2G3/2 , ~7!

are found to beŴ4520.135, Ŵ6520.013, Ŵ850.057,
andŴ1050.036. Except for a sign ofŴ10, the values ofŴl
are consistent with cuboctahedral symmetry@22#. Here R
represents the position of the bond midpoin

lid
n

FIG. 8. ~a! The power spectrum of the steady state portion of t
time series for dimensionless normal stress shown in Fig. 6. T
straight lines at the left and the right indicate the power lawsf 20.6

and f 22, respectively.~b! Short-time Fourier transform. Shown is
the magnitude of the time-dependent Fourier transform of the p
tion of time series at 50,t* ,150. Only a portion of the frequency
domain, namely, 4, f ,30, is shown. The magnitude intensity i
coded using a gray scale, from white~low intensity! to black~high
intensity!.
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7154 PRE 60PIROZ ZAMANKHAN et al.
Ylm„u(R),f(R)… are spherical harmonics,u(R) and f(R)
are the polar angles of the bond measured with respect
fixed reference coordinate system, the coefficients

S l l l

m1 m2 m3
D ~8!

are Wigner 3j symbols, and the averaged quantityQ̄lm
[^Qlm(R)& is taken over the bonds joining particles in th
sample with their near neighbors.

Another quantity that can be used to distinguish flu
from solid-like behavior is the mean square displacem
defined by

^DZ* 2&5N21(
i 5 l

N

^@Zi* ~ t* 1t* !2Zi* ~ t* !#2&. ~9!

Here Zi* (t* )5Zi(t* )/(2R) represents the position of pa
ticle i in the z direction at dimensionless timet* , which is
normalized by the particle diameter;N is the number of par-
ticles in the computational box;t is time,t* 5tU/Lz shows
that the samples are taken a time intervalt apart; and the
angular brackets indicate the ensemble average.

As can be seen in Fig. 10, particles with smooth surfa
are diffusive, except for those particles located in the cr
talline region. This is consistent with recent experimen
observations@23# for which movement of the particles i
directions transverse to the bulk motion were reported a
very high solid concentration. The particle movements in
direction normal to the shear plane in this system can
caused by several thermodynamic forces@24#. Therefore, it is
not clear that the self-diffusion coefficient can be deduc
from data shown in Fig. 10 using the Einstein relation@25#.
This ad hocmethod suggested in Ref.@23#, which was also
used in an earlier work@26#, can at best result in an effectiv
particle diffusion coefficient.

Efforts at understanding the particle diffusive motion
the above-mentioned system resulted in finding the prese
of a two phase granular flow, in which solid and liqu
phases coexist, in the computational box. A streamline in
noncrystalline region@27#, as shown in the inset of Fig. 10
exhibits a behavior which indicates the presence of lar
slow fluctuations. A study of phase transformation as wel

FIG. 9. Projection of particles positions onto the plane (y,z).
The values of solid volume fraction and the phenomenological
rameters are those of Fig. 6.
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the implications of phase coexistence in dense granular fl
are planned to be discussed in a subsequent paper.

In order to validate the premise that collisions rather th
sliding contact may dominate the dynamics of dense gran
flows, different values of particle phenomenological para
eters should be considered. As such, simulations were ru
examine the effect of surface roughness on the dynamic
grains at high solid volume fractions. Figure 11 clearly illu
trates that at a solid volume fraction of 0.6, the fluctuatio
in the time series for the normal stress of the shear flow
inelastic frictional spherical particles—with the phenomen
logical parameterse50.93, m50.123, andb050.4—are
symmetric around a mean value. Therefore, in the absenc
granular crystals, granular materials flowing in a Couette
ometry do not show a wall normal stress signature simila

-

FIG. 10. Variations of dimensionless mean square displacem
^DZ* 2&, with t* . The circles and diamonds represent the cal
lated value of̂ DZ* 2& for the noncrystalline and crystalline region
respectively, of the configuration shown in Fig. 9. Inset: A strea
line in the noncrystalline region of the configuration shown in F
9.

FIG. 11. Dimensionless normal stressP* vs dimensionless time

t* , for rough, inelastic particles forf̄s'0.6, e50.93, m50.123,
andb050.4. Inset: The probability density function of the dime
sionless normal stress at 20,t* ,200, where the mean dimension

less normal stress is a constant, namely,P̄* '7.6.
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that observed in recent experiments@8#. This observation,
which supports the earlier conjecture that the microsco
origin of stick-slip behavior could be the shear-melting tra
sitions and recrystallization of the layer of particles adjac
to the wall, provides further evidence that the dynamics
dense granular flows may be collision dominated.

However, the results presented above using a cons
coefficient of restitution may be regarded with some sus
cion, since measurements have shown that the normal r
tution coefficient is not a constant, and that it depends
nificantly on the impact velocity@10#. To examine the effec
of a coefficient of restitution, which depends on the norm
impact velocity on the dynamics of grains, Eq.~3! with V0
50.5 is used. This heuristic model can predict the trend
data well@10#. However, the value of the constante in the
model is chosen to be that suggested in the above, nam
0.93, by which the large scale fluctuations observed in

FIG. 12. Dimensionless normal stressP* vs dimensionless time
t* , for smooth inelastic particles for e(Vn)512(1
2e)(Vn /V0)1/5. The model parameters aree50.93 andV050.5.
To provide a better visualization, only every 20th point is plotte
Inset: The probability density function of the dimensionless norm
stress at 70,t* ,240.
I.

d
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-
t
f

nt
i-
ti-
-

l

f

ly,
e

real system@8# can be generated. Simulations fore50.93
andV050.5 resulted in somewhat similar time series for t
dimensionless normal wall stress, as shown in Fig. 12. Co
paring the results presented in Figs. 6 and 12 with those
real systems@8#, the effect of a velocity-dependent coeffi
cient of restitution on the dynamics of grains may not
pronounced for the flow conditions considered in this stu
However, the large scale fluctuations, as shown in Fig.
seem to be closer to what was observed experimentally@8#.

IV. CONCLUSIONS

Computer simulations with an idealized collisional mod
were performed for both smooth and rough, monodispe
spherical particles in a Couette flow to examine the effec
particle phenomenological parameters on the flow dynam
When smooth particles were used, an asymmetric nor
stress distribution at the wall was obtained, consistent w
recent experimental findings@8#. In addition, for this case
crystallization was observed to occur, as characterized by
local absence of diffusion, although diffusion still existed
the noncrystallized regions. Significantly, by examining t
fluctuations of the normal stress on the walls, the presenc
the stick-slip motion was found in this system. This findin
may explain the unsteady complications which occurred
the experiments of Hanes and Inman@20#. The origin of
stick-slip behavior appears to be the shear-induced mel
and recrystallization of the layer of particles adjacent to
wall. In light of the findings of the present study, futu
theoretical studies will be conducted with the goal of im
proving our understanding of the microscopic origin of stic
slip behavior. Comparing the results of the simulations w
previously reported experimental data, it can be conclu
that the present idealized collisional model can predict
experimental observations quite closely.
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